

M60/M62/M66 Simister Island Interchange

TR010064

ENVIRONMENTAL STATEMENT APPENDICES

APPENDIX 13.2 WATER QUALITY ASSESSMENT REPORT

APFP Regulation 5(2)(a)

Planning Act 2008 Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009

April 2024

Infrastructure Planning

Planning Act 2008

The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009

M60/M62/M66 Simister Island Interchange

Development Consent Order 202[]

ENVIRONMENTAL STATEMENT APPENDICES APPENDIX 13.2 WATER QUALITY ASSESSMENT REPORT

Regulation Reference	Regulation 5(2)(a)
Planning Inspectorate Scheme Reference	TR010064
Application Document Reference	TR010064/APP/6.3
	M60/M62/M66 Simister Island Interchange Costain Jacobs Partnership Project Team & National Highways

Version Date		Status of Version			
P01	April 2024	FOR DCO APPLICATION			

CONTENTS

Appe	ndix 13.2 Water quality assessment report	1
1	Introduction	1
1.1	Overview	1
1.2	Purpose of the assessment	1
1.3	Drainage strategy	1
2	Assessment methodology and approach	4
2.1	Introduction	4
2.2	Routine runoff – simple level assessment	4
2.3	Spillage risk	5
2.4	Summary of limitations and assumptions	5
3	Assessment results	7
3.1	Introduction	7
3.2	Routine runoff assessment results	7
4	Spillage risk	10
4.1	Assessment results	10
5	Significance of effects	11
5.1	Assessment criteria	11
5.2	Significance with embedded mitigation	12
6	Conclusions	14
Acror	nyms and initialisms	15
Gloss	sary	15
Refer	rences	16
Anne	x A Data summary	17
Anne	x B Sensitivity testing	23
Anne	x C Site visit photographs	25
Anne	x D HEWRAT screenshots	30
Anne	ex E Spillage risk assessment	43

LIST OF PLATES

Plate A.1 HEWRAT Climatic Regions (HEWRAT Help Guide, 2023)	17
Plate C.1 Existing Outfall 1 (Approximate Outfall Easting/Northing: 382836, 406494)	25
Plate C.2 Existing Outfall 2 (Approximate Outfall Easting/Northing: 382605, 407406)	26
Plate C.3 Existing Outfall 4 (Approximate Outfall Easting/Northing: 382519, 405640)	27

Plate C.4 Existing Outfall 5 (Approximate Outfall Easting/Northing: 384748, 404838)2	28
Plate C.5 River Irk looking downstream with outfall entering watercourse on right bank (right) (Approximate Outfall Easting/Northing: 384748, 404838)	29
Plate D.1 Catchment 1 (1A+1B) Step 3 (post-mitigation) HEWRAT Results (Copper)	30
Plate D.2 Catchment 1 (1A+1B) Step 3 (post-mitigation) HEWRAT Results (Zinc)	31
Plate D.3 Catchment 2 Step 3 (post-mitigation) HEWRAT Results (Copper)	32
Plate D.4 Catchment 2 Step 3 (post-mitigation) HEWRAT Results (Zinc)	33
Plate D.5 Catchment 4 Step 3 (post-mitigation) HEWRAT Results (Copper)	34
Plate D.6 Catchment 4 Step 3 (post-mitigation) HEWRAT Results (Zinc)	35
Plate D.7 Catchment 5 Step 3 (post-mitigation) HEWRAT Results (Copper)	36
Plate D.8 Catchment 5 Step 3 (post-mitigation) HEWRAT Results (Zinc)	37
Plate D.9 Catchment 6 Step 3 (post-mitigation) HEWRAT Results (Copper & Zinc)	38
Plate D.10 Catchment 7 Step 3 (post-mitigation) HEWRAT Results (Copper)	39
Plate D.11 Catchment 7 Step 3 (post-mitigation) HEWRAT Results (Zinc)	40
Plate D.12 Catchment 4+7 Step 3 (post-mitigation) HEWRAT Results (Copper)	41
Plate D.13 Catchment 4+7 Step 3 (post-mitigation) HEWRAT Results (Zinc)	42

LIST OF TABLES

Table 1.1 Existing and Scheme drainage network details
Table 3.1 HEWRAT Step 2 Tier 1 assessment results for the existing situation
Table 3.2 HEWRAT results from Step 2 Tier 1 (no mitigation).
Table 3.3 Step 3 routine runoff results for the Scheme (including embedded mitigation)9
Table 4.1 Spillage risk assessment results10
Table 5.1 Routine runoff and accidental spillage risk criteria for establishing the magnitude of impact (taken from Table 3.70 in DMRB LA 113).
Table 5.2 Value of receptors for receiving watercourses 12
Table 5.3 Residual significance of effect of single and cumulative outfall assessments12
Table A.1 AADT band used in the routine runoff assessments for the Scheme (design year2044)18
Table A.2 Q ₉₅ for each assessment point18

Table A.3 Impermeable areas per catchment/outfall for the existing situation Scheme	19
Table A.4 Permeable road areas	20
Table A.5 River width and in-channel structures for Step 2 Tier 1 sediment impacts	20
Table A.6 Step 3 Treatment %	22

Table B.1 ABC Copper Data Sources	23
Table B.2 HEWRAT Step 3 (post-mitigation) EQS copper results with ABC included	24
Table E.1 Spillage Risk Assessment Parameters	43

Appendix 13.2 Water quality assessment report

1 Introduction

1.1 Overview

- 1.1.1 This document presents the assessment of water quality impacts to surface water due to discharges of road runoff from the M60/M62/M66 Simister Island Interchange (the 'Scheme') during its operation as well as impacts from accidental spillage. These assessments have been undertaken in accordance with the Design Manual for Roads and Bridges (DMRB) LA 113 Road Drainage and the Water Environment (DMRB LA 113) (Highways England, 2020a).
- 1.1.2 This document forms an appendix to Chapter 13: Road Drainage and the Water Environment of the Environmental Statement (TR010064/APP/6.1). This document is supported by Appendix 13.7: Drainage Strategy Report of the Environmental Statement Appendices (TR010064/APP/6.3).

1.2 Purpose of the assessment

- 1.2.1 There are two main sources of pollution from roads during the operational phase: routine runoff and accidental spillage risk.
- 1.2.2 Routine runoff consists of road deposits which can contain a range of contaminants such as suspended solids, heavy metals and hydrocarbons. When combined with rainfall, these contaminants can runoff into the highway drainage system that discharges to a watercourse, potentially polluting the surface water environment.
- 1.2.3 On all roads there is a risk that an accidental spillage or fire may lead to an acute pollution incident. Where spillages do reach a surface watercourse the pollution impact can be severe, but is usually of short duration, typical of an acute pollution impact.

1.3 Drainage strategy

Existing drainage network

- 1.3.1 The existing drainage network is comprised of six drainage catchments. Full details on the individual drainage catchments are provided in Appendix 13.7: Drainage Strategy Report of the Environmental Statement Appendices (TR001064/APP/6.3).
- 1.3.2 Details of the existing drainage networks has been defined using the Drainage Data Management System (DDMS) (National Highways, 2023), as-built drawings and drainage surveys. It has been found that, currently there is no existing treatment for water quality provided. Again, full details on the individual drainage catchments are provided in Appendix 13.7: Drainage Strategy Report of the Environmental Statement Appendices (TR001064/APP/6.3).

Drainage network

1.3.3 The drainage networks for the Scheme are comprised of seven catchments. The Scheme will include modifications to existing catchments, with the exception of Catchment 3, which is not affected by the Scheme. An additional drainage catchment (Catchment 7) would be created as part of the Scheme. The details of the drainage catchments and water quality treatment measures for the Scheme are shown in Table 1.1.

Table 1.1 Existing and Scheme drainage network details

Existing Drainage Catchment	Existing Network Outfall Point (Easting/Northing)	Scheme Drainage Catchment	Network Outfall Point (Easting/Northing)	New or Existing Outfall	Receiving Watercourse	Identified Water Quality Treatment Measure
Catchment 1	382836, 406494	Catchment 1 (1A+1B)	382879, 406583	New	Castle Brook	1x Retention Pond + 1x Swale
Catchment 2	382605, 407406	Catchment 2	382605, 407406	Existing	Castle Brook	1x Retention Pond
Catchment 4	381549, 406348	Catchment 4	381549, 406348	Existing	Parr Brook	2x Swale + 1x Retention Pond
Catchment 5	384748, 404838	Catchment 5	384748, 404838	Existing	River Irk	1x Retention Pond
Catchment 6	378499, 403535	Catchment 6	378499, 403535	Existing	River Irwell	None (Oversized pipes for attenuation)
N/A – New outfall	N/A	Catchment 7	381549, 406348	New	Parr Brook	1x Retention Pond

2 Assessment methodology and approach

2.1 Introduction

2.1.1 The assessment of potential impacts on water quality during the operational phase has been undertaken for routine runoff and spillage risk using the Highways England Water Risk Assessment Tool (HEWRAT), as detailed in DMRB LA 113.

2.2 Routine runoff – simple level assessment

- 2.2.1 The HEWRAT routine runoff assessment uses a three-step approach to assess the impacts of both soluble and sediment-bound pollutants. The three-step approach is as follows:
 - Step 1: estimates pollutant concentrations in the undiluted road runoff.
 - Step 2: estimates pollutant concentrations after dilution within the receiving water body.
 - Step 3: estimates pollutant concentrations after mitigation (i.e. the treatment provided by the sustainable urban drainage systems (SuDS)) and dilution within the receiving water body.
- 2.2.2 Under Step 1, undiluted pollutant concentrations in the drainage discharges are determined. These values are then used in Step 2 to estimate the pollutant concentrations after dilution in the receiving watercourse. For Step 2, the HEWRAT model results are compared to a set of compliance thresholds for sediments, acute impacts from soluble copper and zinc (compared with Runoff Specific Thresholds (RSTs)) and the annual average concentrations of (soluble) copper and zinc which are compared with Environmental Quality Standards (EQS). Results are recorded and compliance is indicated in the model outputs by a 'pass' or 'fail'.
- 2.2.3 Chronic impacts associated with sediment-bound pollutants are assessed on whether polluted sediment will accumulate on the riverbed or disperse in the river downstream (based on the stream velocity under low flow conditions).
- 2.2.4 Step 2 is carried out in two 'tiers' of assessment for sediment accumulation, based on different levels of input parameters: Tier 1 requires input of the estimated river width at Q₉₅ (the flow in the receiving watercourse that is exceeded 95% of the time) only, whilst Tier 2 requires information regarding the physical properties of the receiving watercourse, for example the bank side slopes and longitudinal gradient. Step 2 Tier 2 assessments are generally undertaken following a sediment failure of Step 2 Tier 1.
- 2.2.5 Step 3 allows the HEWRAT tool to apply levels of treatment (as "percentages") to provide an indication of the type of mitigation required for both sedimentbound and soluble pollutants. Treatment values (efficiencies) are in accordance with DMRB CG 501 (Highways England, 2020b).

2.2.6 In accordance with DMRB LA 113, outfalls discharging to the same watercourse within 100m of each other have been assessed cumulatively for soluble and sediment-bound pollutants and within 1km of each other for soluble pollutants.

2.3 Spillage risk

- 2.3.1 For all roads, there is a risk that a spillage may lead to an acute pollution incident. Where spillages do reach a surface watercourse the pollution impact can be severe, but is usually of short duration, typical of an acute pollution impact.
- 2.3.2 The spillage risk assessment within DMRB LA 113 has been designed to calculate spillage risk during the operation of the Scheme and the associated probability of a serious pollution incident. The risk is calculated assuming an incident involving the spillage of a potentially polluting substance onto the carriageway would occur at an assumed frequency based on calculated road traffic volumes, the percentage of that road traffic volume considered as Heavy Good Vehicles (HGV), and the type of road/junction. The annual probability of an accidental spillage leading to a serious pollution incident is also dependent on the response time of the emergency services. A risk factor is applied depending on the location and road/junction type and the sensitivity of the receiving watercourse.
- 2.3.3 DMRB LA 113 states that the risk of a serious pollution incident is deemed to be within acceptable limits if the Annual Exceedance Probability (AEP) is less than a 1% (i.e. a 1 in 100-year return period or greater). Where the spillage is within 1km of a sensitive area the risk of a serious pollutant incident is deemed within acceptable limits if the AEP is less than 0.5% (i.e. a 1 in 200-year return period or greater).

2.4 Summary of limitations and assumptions

- 2.4.1 The following assumptions and limitations have been identified:
 - The assessments are based upon the latest and most up-to-date designs for the drainage design. See full details in Appendix 13.7: Drainage Strategy Report of the Environmental Statement Appendices (TR010064/APP/6.3). The Scheme will be subject to further refinement and change during future stages of the Scheme. Therefore, the design details included in this assessment are subject to change based on any design changes.
 - Some data associated with this assessment has been established through a desktop study or from existing information sources.
 - Some estimates of channel dimensions and characteristics used in the assessments have been informed from online aerial imagery. Where assumptions or uncertainties in the input data used in the assessments have been identified, these have been highlighted in the relevant sections of this report.
 - The identification and assessment of potential mitigation solutions has not considered constraints or the presence of utilities or any other considerations which may affect feasibility.

• The ambient background concentration (ABC) for copper have not been included within the HEWRAT assessments. The reliability of the copper data available utilising site collected data or data freely available online from the Environment Agency was not considered robust to be included within the assessments. A programme of water quality sampling will be undertaken during the detailed design phase in advance of construction. This will allow refinement of the HEWRAT assessments to be undertaken. A sensitivity test has been undertaken using the existing available data and is available in Annex B.

3 Assessment results

3.1 Introduction

3.1.1 This section presents the results of the water quality assessments undertaken for the Scheme. Annex A provides a summary of the input data used within the assessments.

3.2 Routine runoff assessment results

Existing situation assessment results

3.2.1 Table 3.1 shows the results of the existing situation for outfalls with available site data at Step 2 (Tier 1). Within the table, a traffic light system has been used to aid interpretation: green shading indicates a HEWRAT 'pass', and red shading indicates HEWRAT 'fail'.

Table 3.1 HEWRAT Step 2 Tier 1 assessment results for the existing situation

Outfall (assessment location)	Annual Average Concentration related to EQS Compliance: EQS Copper = 1.0µg/l and Zinc = 10.9µg/l		Concentration related to EQS Compliance:Bound Pollutants (Pass /Fail)EQS Copper = 1.0µg/l and Zinc =		Acute Soluble Copper & Zinc number of exceedances/year (RST exceedance limits in brackets)				
Cu Zn			RST 24 ho	ours (2)	RST 6 h	RST 6 hours (1)			
	(µg/l)	(µg/l)		Cu	Zn	Cu	Zn		
1	1.31	7.02	Pass	4.80	5.90	1.10	2.00		
2	0.83	4.46	Pass	2.40	3.20	0.30	1.20		
4	0.24	1.33	Pass	0.20	0.50	0.20	0.10		
5	0.10	0.5	Pass	0.00	0.10	0.00	0.00		
6	0.01	0.08	Pass	0.00	0.00	0.00	0.00		

Scheme assessment results

Results – without mitigation

3.2.2 All outfalls failed the Step 1 assessment, which screens against Annual Average Daily Traffic (AADT), climatic region, and standardised annual average rainfall only. This represents the undiluted pollutant concentrations in the drainage discharges prior to reaching the watercourse. These are carried forward and used in Step 2 assessments to estimate the pollutant concentrations after dilution in the receiving watercourse.

3.2.3 A Step 2 Tier 1 assessment (i.e. no mitigation) has been undertaken based upon the Scheme. The results of the assessments are summarised in Table 3.2. Locations of the outfalls are provided in Figure 13.2: Outfall Locations of the Environmental Statement Figures (TR010064/APP/6.2).

Outfall	Receiving Watercourse (assessment location)	Annual Average Concent related t Complia EQS Cop 1.0µg/l a Zinc = 10	ration o EQS nce: oper = nd	Sediment Bound Pollutants (Pass /Fail)	Acute Soluble Copper & Zind number of exceedances/year (RST exceedance limits in brackets)		s/year	
		Cu (µg/l)	Zn (µg/l)		RST 24 (2)	hours	RST 6 (1)	hours
					Cu	Zn	Cu	Zn
1 (1A +1B)	Castle Brook downstream of confluence	1.50	7.95	Pass	6.10	6.70	1.00	2.60
2	Castle Brook	0.82	4.42	Pass	2.30	3.10	0.30	1.20
4	Parr Brook	0.79	4.24	Pass	1.90	3.00	0.30	0.70
5	River Irk	0.10	0.56	Pass	0.00	0.10	0.00	0.00
6	River Irwell	0.01	0.08	Pass	0.00	0.00	0.00	0.00
7	Parr Brook	0.15	0.55	Pass	0.10	0.10	0.00	0.00
Cumulativ	ve Assessment							
4 + 7	Parr Brook	0.98	5.27	Pass	2.90	3.80	0.30	1.00

Table 3.2 HEWRAT results from Step 2 Tier 1 (no mitigation).

Step 3 (post-mitigation) HEWRAT assessment results

3.2.4 Table 3.3 presents the results from the Step 3 HEWRAT assessments for the design including embedded mitigation.

Table 3.3 Step 3 routine runoff results for the Scheme (including embedded mitigation)

Outfall	Receiving Watercourse (assessment location)	Annual A Concentr related to Compliar EQS Cop 1.0µg/l ar 10.9µg/l	ration EQS nce: per =	Sediment Bound Pollutants (Pass /Fail)	Acute Soluble Copper & Zin number of exceedances/ye (RST exceedance limits in brackets)		s/year		
		Cu (µg/l)	Zn (µg/l)		RST 24 (2)			6 hours	
					Cu	Zn	Cu	Zn	
1 (1A+1B)	Castle Brook	0.45	2.78	Pass	0.20	0.80	0.00	0.10	
2	Castle Brook	0.49	3.09	Pass	0.60	1.70	0.10	0.20	
4	Parr Brook	0.27	1.70	Pass	0.10	0.30	0.00	0.00	
5	River Irk	0.08	0.48	Pass	0.00	0.10	0.00	0.00	
6	River Irwell	0.01	0.08	Pass	0.00	0.00	0.00	0.00	
7	Parr Brook	0.09	0.39	Pass	0.00	0.00	0.00	0.00	
Cumulati	ve Assessment								
4 + 7	Parr Brook	0.44	2.74	Pass	0.20	1.30	0.30	0.20	

4 Spillage risk

4.1 Assessment results

4.1.1 Table 4.1 presents the results from the accidental spillage risk assessment for the Scheme. With reference to the results, an annual probability of a serious pollutant incident occurring over a return period of >200 years is deemed to have a negligible magnitude of impact.

Catchment	Total Road Length (km)	Probability of Spillage (P _{SPL})	Probability of Incident (P _{INC}) %	Return Period (years) of Spillage	Unacceptable Risk?
1A + 1B	4.478	0.0019	0.0856	1,169	No
2	0.865	0.0002	0.0105	9,505	No
4	2.621	0.0020	0.897	1,114	No
5	1.188	0.0007	0.0298	3,357	No
6	2.839	0.0051	0.2317	432	No
7	1.550	0.0012	0.0538	1,860	No

Table 4.1 Spillage risk assessment results

5 Significance of effects

5.1 Assessment criteria

5.1.1 The criteria for identifying the magnitude of impacts, related to water quality impacts, are documented in DMRB LA 113. Table 5.1 outlines the criteria which is dependent upon the HEWRAT results for routine runoff and accidental spillage risk. The magnitude of an impact (selected from Table 5.1) and the value of a receptor are combined to produce the significance of effect (Table 5.2). The significance of effect is based upon the criteria outlined in DMRB LA 104 (Highways England, 2020c).

Table 5.1 Routine runoff and accidental spillage risk criteria for establishing the magnitude of impact (taken from Table 3.70 in DMRB LA 113).

Magnitude of impact	Criteria
Major adverse	Failure of both acute-soluble and chronic-sediment related pollutants in HEWRAT and compliance failure with EQS values.
	Calculated risk of pollution from a spillage ≥2% annually (spillage assessment)
Moderate adverse	Failure of both acute-soluble and chronic-sediment related pollutants in HEWRAT but compliance with EQS values.
	Calculated risk of pollution from spillages ≥1% annually and <2% annually.
Minor adverse	Failure of either acute soluble or chronic sediment related pollutants in HEWRAT.
	Calculated risk of pollution from spillages ≥0.5% annually and <1% annually.
Negligible	No risk identified by HEWRAT (pass both acute-soluble and chronic- sediment related pollutants).
	Risk of pollution from spillages <0.5%
Minor Beneficial	HEWRAT assessment of either soluble or sediment-bound pollutants becomes a 'pass' from an existing baseline of a 'fail' condition.
	Calculated reduction in existing spillage risk by 50% or more (when existing spillage is <1% annually).
Moderate Beneficial	HEWRAT assessment of both soluble and sediment-bound pollutants becomes a 'pass' from an existing baseline of a 'fail' condition.
	Calculated reduction in existing spillage risk by 50% or more when existing spillage is >1% annually).
	Contribution to improvement in water body WFD Regulations classification.
Major Beneficial	Removal of existing polluting discharge or removing the likelihood of polluting discharges occurring to a water body. Improvement in water body WFD Regulations classification.

Outfall Number (assessment location)	Receiving watercourse	DMRB LA 113 criteria/typical examples used to determine value	Value
1 (1A + 1B)	Castle Brook	Watercourse not having a WFD classification shown in RBMP and a Q_{95} >0.001m ³ /s.	Medium
2	Castle Brook	Watercourse not having a WFD classification shown in RBMP and a Q_{95} >0.001m ³ /s.	Medium
4	Parr Brook	Watercourse not having a WFD classification shown in RBMP and a Q_{95} >0.001m ³ /s.	Medium
5	River Irk	Watercourse having a WFD classification shown in RBMP and a Q_{95} <1.0m ³ /s.	High
6	River Irwell	Watercourse having a WFD classification shown in RBMP. Q ₉₅ >1.0m ³ /s, however, watercourse not achieving 'High' physico-chemical and biological elements and no 'Pass' for specific pollutants/priority substances. Also not within a protected/designated site.	High
7	Parr Brook	Watercourse not having a WFD classification shown in RBMP and a Q_{95} >0.001m ³ /s.	Medium

Table 5.2 Value of receptors for receiving watercourses

5.2 Significance with embedded mitigation

5.2.1 The significance of effect has been determined with the embedded mitigation for the Scheme and based upon the HEWRAT results presented above. All outfalls pass the routine runoff and spillage risk assessments (presented in Section 4), in Table 5.3.

Table 5.3 Residual significance of effect of single and cumulative outfall assessments

Outfall Number	Receiving watercourse (and value)	Magnitude of impact	Significance of effect with embedded mitigation
1 (downstream location on Castle Brook)	Castle Brook (Medium)	Minor (Beneficial)	Slight (Beneficial)
2	Castle Brook (Medium)	Minor (Beneficial)	Slight (Beneficial)
4 (at outfall location)	Parr Brook (Low)	Negligible	Neutral
5	River Irk (High)	Negligible	Neutral
6	River Irwell (High)	Negligible	Neutral

Outfall Number	Receiving watercourse (and value)	Magnitude of impact	Significance of effect with embedded mitigation
7 (at outfall location)	Parr Brook (Low)	Negligible	Neutral
4 + 7 (at downstream location)	Parr Brook (Medium)	Negligible	Neutral

- 5.2.2 After embedded mitigation measures are applied, the significance of effects are no greater than slight (beneficial) and therefore are not deemed to be environmentally significant.
- 5.2.3 DMRB LA 113 also includes criteria for establishing beneficial impacts, which can be identified when comparing the existing situation results to the Scheme results including embedded mitigation. HEWRAT results demonstrate that two of the outfalls (Outfall 1 and Outfall 2) both pass all parameters where the existing situation fail for soluble copper and/or zinc.

6 Conclusions

- 6.1.1 The water quality assessments have considered the impact of the Scheme in relation to pollution from routine runoff and accidental spillage risk. Simple level assessments using HEWRAT have been undertaken and results show no significant effects including embedded mitigation. Beneficial effects (where the Scheme demonstrates an improvement upon the existing situation) have been recorded for two outfalls.
- 6.1.2 All outfalls pass the EQS and RSTs for Copper and Zinc and for sediment bound pollutants at Step 3 (including embedded mitigation). The spillage risk assessment results for the Scheme show that all outfalls meet the acceptable limits. As such, potential impacts from the Scheme are deemed not to be environmentally significant.

Acronyms and initialisms

Acronym or initialism	Term	
AADT	Annual Average Daily Traffic	
ABC	Ambient background concentration	
AEP	Annual Exceedance Probability	
BFI	Baseflow Index	
DDMS	Drainage Data Management System	
DMRB	Design Manual for Roads and Bridges	
EQS	Environmental Quality Standards	
HEWRAT	Highways England Water Risk Assessment Tool	
HGV	Heavy Goods Vehicle	
RDWE	Road Drainage and the Water Environment	
RST	Runoff Specific Threshold	
SuDS	Sustainable urban drainage systems	
SAAR	Standard Average Annual Rainfall	
vpd	Vehicles per Day	
WFD	Water Framework Directive	

Glossary

Term	Definition	
Acute impact	Occurs as a result of a severe, usually transient, event. For road runoff, acute pollution is usually the result from a spillage of pollutants, but can result from routine runoff.	
Annual Exceedance Probability (AEP)	Annual Exceedance Probability e.g. 1% AEP is equivalent to 1% (1 in 100) probability of flooding occurring in any one year (or, on average, once in every 100 years).	
Baseflow Index	The proportion of the flow in a watercourse made up of groundwater discharges. Base flow sustains the watercourse in dry weather.	
Environmental Quality Standard	The maximum permissible concentration of a potentially hazardous chemical. The Environmental Quality Standard is used to assess the risk to the health of aquatic flora and fauna.	
Q ₉₅	The flow rate of the watercourse that is exceeded for 95% of the time.	

Term	Definition
Routine runoff	The normal runoff from roads including any contaminants washed off the surface in rainfall events which can result in either acute or chronic impacts. Routine runoff excludes the effect of spillages and major leaks which usually result in acute impacts.
Runoff Specific Threshold	Time dependent (24 hour or six hour) soluble pollutant concentration above which adverse effects may be observed in aquatic fauna.
Treatment Train	Where multiple SuDS measures treat runoff to a single outfall

References

Highways England (2020a). Design Manual for Roads and Bridges, LA 113 Road Drainage and the Water Environment. Revision 1.

Highways England (2020b). Design Manual for Roads and Bridges, CG 501 Design of highway drainage systems.

Highways England (2020c). Design Manual for Roads and Bridges, LA 104 Environmental Assessment and Monitoring. Revision 1.

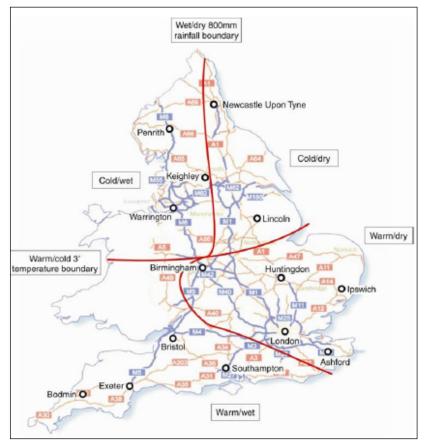
National Highways (2023). Highways Agency Drainage Data Management System (DDMS). Accessed April 2023. https://www.haddms.co.uk/index.cfm?fuseaction=home.main.

Institute of Hydrology (1995). Report No. 108. Low flow estimation in the United Kingdom.

Wallingford HydroSolutions (2022). LowFlows Reports.

UK Centre for Ecology and Hydrology (2021). National River Flow Archive. Accessed May 2023.

Highways England Water Risk Assessment Tool (HEWRAT) v2.0.4 and HEWRAT Help Guide v2.0. Accessed June 2023. www.haddms.co.uk.


Annex A Data summary

A.1 HEWRAT – Baseline data for Step 1 (Runoff quality) assessments

A.1.1 Baseline data, site-specific data collected during site surveys, and the most recent drainage design have all been used within the routine runoff assessments.

Climatic Region

A.1.2 The Scheme lies within the north west of England and the climatic region has been selected as Cold/Wet based upon the figure in the HEWRAT Help guide v2.0 as shown in Plate A.1.

Plate A.1 HEWRAT Climatic Regions (HEWRAT Help Guide, 2023)

Rainfall Site

- A.1.3 Selected as Keighley (Standard Average Annual Rainfall (SAAR) 1000mm) as the closest in proximity to the Scheme. Using the SAAR based upon the Keighley figure is therefore considered representative of the Scheme area.
- A.1.4 It has been noted that the Scheme lies near to the Warrington SAAR (830mm) rainfall site. A sensitivity test has been undertaken using this rainfall site and it was recorded that this had no change on the Pass/Fail scenario of the overall results compared to using Keighley.

Traffic data

A.1.5 The assessments have been based upon the baseline year (2017/18) for the existing situation assessments and the design year (2042) of the Scheme. The traffic flow model has been used to identify the two-way AADT for the length of road discharging to each outfall. By using the highest AADT this provides a worst-case scenario. Table A.1 details the AADT bands used in the routine runoff assessments for the Scheme based upon the design year.

Table A.1 AADT band used in the routine runoff assessments for the Scheme (design year 2044)

Drainage catchment/Outfall number	AADT band used in assessment
1 (1A+1B)	>100,000
2	>100,000
4	>100,000
5	>100,000
6	>100,000
7	50,000 – 100,000
4 + 7	>100,000

A.2 HEWRAT – Baseline data for Step 2 (River impacts) assessments

Annual 95% ile river flow (Q₉₅) and Baseflow Index

- A.2.1 Q_{95} is the flow that is exceeded 95% of the time and is an indication of low flow. Within HEWRAT the minimum assessable Q₉₅ is 0.0011m³/s. Baseflow Index is the contribution of groundwater to a watercourse.
- A.2.2 Table A.2 presents the Q₉₅ and Baseflow Index (BFI) data used for each outfall in the assessment. Q₉₅ and BFI values have been obtained from various sources, these are outlined within Table A.2.

Catchment (Receiving watercourse) Location of Q ₉₅	Easting/ Northing of Outfall Point to Receiving Watercourse	Outfall	Q ₉₅ used in the assessment (m³/s)	BFI	Description/Data source
Castle Brook	382879, 406583	1	0.010	0.8	From Wallingford LowFlow Service
Castle Brook	382605, 407406	2	0.012	0.75	From Wallingford LowFlow Service

Та

Catchment (Receiving watercourse) Location of Q ₉₅	Easting/ Northing of Outfall Point to Receiving Watercourse	Outfall	Q ₉₅ used in the assessment (m ³ /s)	BFI	Description/Data source
Parr Brook	381549, 406348	4	0.014	0.78	Wallingford Hydrosolutions (2022) LowFlow Service
River Irk	384748, 404838	5	0.24065	0.597	Institute of Hydrology (1995) Report No. 108. Low flow estimation in the United Kingdom
River Irwell	378499, 403535	6	3.645	0.47	UK Centre for Ecology and Hydrology (2021) National River Flow Archive
Parr Brook	381549, 406348	7	0.014	0.78	Wallingford Hydrosolutions (2022) LowFlow Service
Parr Brook	381549, 406348	4 & 7	0.014	0.78	Wallingford Hydrosolutions (2022) LowFlow Service

Impermeable road area drained

A.2.3 For the Scheme the impermeable areas have been obtained from the drainage design, see Appendix 13.7: Drainage Strategy Report of the Environmental Statement Appendices (TR010064/APP/6.3) for full details. The impermeable areas for each catchment used in the routine runoff assessments is shown in Table A.3.

Table A.3 Impermeable areas per catchment/outfall for the existing situation Scheme

Catchment/outfall number	Impermeable area (ha)
1 (1A + 1B)	8.3
2	4.6
4	5.4
5	10.3
6	21.8
7	1.5
4 + 7	6.9

Permeable road area

A.2.4 Permeable road areas have been used in the assessments of the Scheme. Table A.4 outlines the permeable road areas used in the assessments of the Scheme.

 Table A.4 Permeable road areas

Outfall	Permeable Road Area (ha)
1 (1A + 1B)	6.9
2	1.2
4	6.6
5	3.8
6	1
7	1.5
4+7	8.1

Protected sites

A.2.5 There are no statutory designated nature conservation sites within 1km downstream of any of the discharge points.

For dissolved zinc only – water hardness

A.2.6 Water samples were taken where possible during the site visit. These were used to inform water hardness. The value chosen for all outfalls is 'Medium'.

Estimated river width and presence of downstream structures

- A.2.7 The estimated river width at Q₉₅ has been estimated from a combination of sources including photographs (in Annex C), measurements taken on site, and google aerial imagery. The data is presented in A.5.
- A.2.8 It is also necessary to identify whether any in-channel structures have the potential to reduce velocity and thus increase the likelihood of sediments accumulating. This was checked for each identified outfall during the site visit. This data is also presented in the Table A.5.

Catchment	Is there a structure, lake, pond or canal that reduces velocity within 100m of the point of discharge?	Estimated river width at Q_{95} (m)
1 (downstream on Castle Brook)	No	0.5
2	No	0.5
4	No	0.5

Catchment	Is there a structure, lake, pond or canal that reduces velocity within 100m of the point of discharge?	Estimated river width at Q ₉₅ (m)
5	No (however note that there is a weir approximately 130m downstream of outfall)	5
6	No	15
7	No	0.5
4 + 7 (based upon downstream open channel assessment location)	No	0.5

A.3 Step 3 - Design treatment

- A.3.1 The calculated treatment for each drainage catchment is outlined in Table A.6.
- A.3.2 The efficiency of each treatment component within a SuDS treatment train, has been multiplied together to determine the combined efficiency, using the following equation:

% Treatment = $1 - ((1 - Treatment 1)^*(1 - Treatment 2))$

- A.3.3 Where only a percentage of the total catchment impermeable area passes through a SuDS component, the treatment efficiency for the SuDS component has been factored down using the percentage of catchment passing through the SuDS. This percentage value is then used within the calculation above.
- A.3.4 For cumulative assessments, the following methodology has been used to calculate a weighted averaged treatment efficiency, when treatment trains vary between two catchments that ultimately are being discharged into the same watercourse.
- A.3.5 The three main steps of the methodology are as follows:
 - Calculate out percentage of each catchment of the Total Area (of all catchments in the cumulative assessment), e.g., X% = X / (X+Y)
 - Multiple catchment percentage (X%) to relevant Total treatment train efficiency
 - Add both values from the step above together to get final weighted treatment efficiency. Totals should be rounded down to the nearest number so as not to over-estimate the final treatment efficiency.

Table A.6 Step 3 Treatment %

Catchment	Water Quality	Identified Treatment (%)			Comments	
	Treatment Measure	Cu	Zn	Sediments		
1 (1A+1B)	1x Retention Pond + 1x Swale	70	65	92	100% of total impermeable runoff passes through retention pond and swale.	
2	1x Retention Pond	40	30	60	100% of total impermeable runoff passes through retention pond.	
4	2x Swale + 1x Retention Pond	66	60	86	22.6% of total impermeable runoff passes through Swale 1.	
					73.6% of total impermeable runoff passes through Swale 2.	
					100% of total impermeable runoff passes through retention pond.	
5	1x Retention Pond	19	14	28	46% of total impermeable runoff passes through retention pond.	
6	None (Oversized pipes for attenuation)	0	0	0	n/a	
7	1x Retention Pond	40	30	60	100% of total impermeable runoff passes through retention pond.	
4+7	2x Swale + 1x Retention Pond for each catchment	55	48	75	n/a	

Annex B Sensitivity testing

- B.1.1 As part of the routine runoff assessments, the ABC for copper value can be included within the assessment. The ABC is the upstream dissolved copper concentration in the receiving watercourse prior to receiving surface water runoff. In HEWRAT, this ABC value is simply added onto the established EQS value from the routine runoff from the Scheme.
- B.1.2 As part of site surveys, in September 2019, one water sample from each existing receiving watercourse was taken and sent for laboratory analysis. At the time of this survey, Outfall 3 was included within the Scheme and Outfall 6 was assumed to discharge to Bradley Brook. As a consequence, not all outfalls within the Scheme were sampled for laboratory analysis. A review of the Environment Agency Water Quality Archive found that data was available for some receiving watercourses. These sites are:
 - Hollins (Whittle) Brook Ptc River Roch (NW-88002239) Potentially applies to Catchments 1 & 2 which discharge to Castle Brook, a tributary of Whittle Brook.
 - River Irk at Hendham Vale (NW-88002375) Potentially applies to Catchment 5) which discharges to River Irk.
 - River Irwell At Old Ringley Bridge NW-88002324 Potentially applies to Catchment 6 which discharges to River Irwell.
- B.1.3 A summary of the ABC data is presented in Table B.1.

Relevant Catchment	Receiving Watercourse	Jacobs Sept 2019 Sampling Value (Cu µg/l)	EA Water Quality Archive (Average value from last 10 available samples) (Cu μg/l)
Catchment 1 (1A + 1B)	Castle Brook (Tributary of Whittle Brook)	4.90	3.86
Catchment 2	Castle Brook (Tributary of Whittle Brook)	4.90	3.86
Catchment 4	Parr Brook	2.70	N/A
Catchment 5	River Irk	4.00	2.76
Catchment 6	River Irwell	Not sampled	4.45
Catchment 7	Parr Brook	2.70	N/A
Catchment 4+7	Parr Brook	2.70	N/A

Table B.1 ABC Copper Data Sources

- B.1.4 As there was only one sample taken during the site survey, and the data from the Environment Agency Water Quality Archive is from 2002 and 2013, this data was not considered robust to provide a representative value for each watercourse that could be used with confidence in HEWRAT to determine the overall copper concentration from the Scheme within each receiving watercourse.
- B.1.5 However, as part of a sensitivity analysis, HEWRAT assessments have been undertaken to include the ABC copper values. Where a value from each source is recorded, the higher of the two has been included. The results of these are shown in Table B.2.
- B.1.6 It should be noted that adding the ABC for copper in HEWRAT means that the EQS for copper for all catchments now fails the EQS threshold of 1 µg/l. The HEWRAT assessment tool uses inputs to determine the annual average concentration for dissolved copper and compares the output value against the EQS threshold which is the threshold for bioavailable dissolved copper in a given watercourse. In general, dissolved copper outputs from HEWRAT are expected to be an order of magnitude above the bioavailable EQS. A detailed-level assessment (Metal Bioavailability Assessment Tool (M-BAT)) can be undertaken to help mitigate these failures as this generates a value that can be used as a site specific EQS value. Using measured dissolved copper within the M-BAT tool as an input value also allows a bioavailable copper concentration to be calculated and this would be expected to be an order of magnitude below the measured dissolved copper concentrations.
- B.1.7 A programme of water quality monitoring will be carried out during the detailed design phase to support updated HEWRAT assessments. As part of that monitoring copper concentrations will be recorded.

Relevant Catchment	Receiving Watercourse	Annual Average Concentration related to EQS Compliance:
		(µg/l)
Catchment 1 (1A + 1B)	Castle Brook (Tributary of Whittle Brook)	5.14
Catchment 2	Castle Brook (Tributary of Whittle Brook)	5.29
Catchment 4	Parr Brook	2.91
Catchment 5	River Irk	4.07
Catchment 6	River Irwell	4.47
Catchment 7	Parr Brook	2.77
Catchment 4+7	Parr Brook	3.06

Table B.2 HEWRAT Step 3 (post-mitigation) EQS copper results with ABC included.

Annex C Site visit photographs

Plate C.1 Existing Outfall 1 (Approximate Outfall Easting/Northing: 382836, 406494)

Plate C.2 Existing Outfall 2 (Approximate Outfall Easting/Northing: 382605, 407406)

Plate C.3 Existing Outfall 4 (Approximate Outfall Easting/Northing: 382519, 405640)

Plate C.4 Existing Outfall 5 (Approximate Outfall Easting/Northing: 384748, 404838)

Plate C.5 River Irk looking downstream with outfall entering watercourse on right bank (right) (Approximate Outfall Easting/Northing: 384748, 404838)

Annex D HEWRAT screenshots

Plate D.1 Catchment 1 (1A+1B) Step 3 (post-mitigation) HEWRAT Results (Copper)

highways england	Highways England	Water Risk Assessment	lool	Version 2.0.4 June 2019	
		Soluble			Sediment - Chronic Impact
	EQS - Annual Average Co	acentration		Acute Impact	
	opper	Zinc			Pass
	1.50 Tier 2 (using UK TAG	7.95	ug/l	Copper Zinc	Sediment deposition for this site is judged as:
	or Step 3 mitigation.			Pass Pass	Accumulating? No 0.27 Low flow Velm/s
	0.45	2.38	ug/l	F 455 F 455	Extensive? No - Deposition Index
Step 3					
Road number		M 60 J 18		HE Area / DBFO number	
Assessment type		Non-cumulative assess me	ent (single outfall)		
OS grid reference of assessmen	t point (m)	Easting		Northing	
OS grid reference of outfall struc	ture (m)	Easting		Northing	
Outfall number		Outfall 1 (1A + 1B)		Listo foutfalls in cumulative	
Receiving watercourse		Castle Brook and onto V	Vhittle Brook	assessment	
EA receiving water Detailed Riv	er Network ID			Assessor and a filiation	Hannah Bewley(Jacobs)
Date of assessment		17/05/2023		Version of a ssessment	h I
Notes					
Step 1 Runoff Quality	AADT ==100,000	▼	Climatic region Co	ider Wet Rainfall site	Keightey (SAAR 1000mm)
Step 2 River impacts	Annual Q ₂₅ river flow (m ³ /s)		0.01 F	reshwater EQS limits:	
(Enter zero in Annual Q ₂₅	Impermeable road area drai	ined (ha)	8.3	Bioavailable dissolved copper (µg/I)	1
river flow box to assess Step 1 runoff quality	Permeable area draining to	outfall (ha)	6.9	Bioavailable dissolved zinc (µg/l)	10.9
only)	Base Flow Index (BFI)		0.8 İst	he discharge in or within 1 km upstream of a pr	otected site for conservation?
For dissolved zinc only	Water hardness	Medium = 50-200 CaOO3/I	•	For dissolved copper only Ambient bac	kground concentration (µg/l)
For sediment impact only	Is there a downstream struc	cture, lake, pond or canal that re	duces the velocity within	100m of the point of discharge?	No -
	Tier 1 Estimated ri	iver width (m)	0.5		
	C Tier 2 Bed width (r	m)	3 Manning	g's n 0.07 Side slo	pe (m/m) 0.5 Long slope (m/m) 0.0001
Step 3 Mitigation			F	Estimated effectiveness Treatment for Attenuation for solubles -	
		Brief description		solubles (%) restricted discharge rate (1/s	s) sediments (%)
Existing measures				0 D No restriction -	0
Proposed measures				70 No restriction	92

Plate D.2 Catchment 1 (1A+1B) Step 3 (post-mitigation) HEWRAT Results (Zinc)

highways england	Highways Engla	and Water Risk Assessme	ent lool	Version 2.0	A 0010 2010		
		Soluble	•				Sediment - Chronic Impact
Step 2 Tier 1 fail. Go to	EQS - Annual Average Copper 1.50 Tier 2 (using UK TAG or Step 3 mitigation. 0.52	<u>e Concentration</u> Zinc 7.35 2.78	ug/l	Copper Pass	Acute Impact Ziac Pass	Acce	Pass ineat deposition for this site is judged as: unulating? No 0.27 Low flow Vel m/s ensive? No - Deposition Index
Step 3	0.52						
Road number		M 60 J 18		HE Area /	DBFO number		
Assessment type		Non-cumulative asses	sment (single outfai				•
OS grid reference of assessmen	nt point (m)	Easting		,	Northing		
OS grid reference of outfall struc	ture (m)	Easting			Northing		
Outfall number		Outfall 1 (1A + 1B)			falls in cumulative		
Receiving watercourse		Castle Brook and on	to Whittle Brook	assessme	nt		
EA receiving water Detailed Riv	er Network ID			Assessor	and affiliation	H	Hannah Bewley(Jacobs)
Date of a ssessment		17/05/2023		Version o	f a sse ssment	N N	N
Step 1 Runoff Quality Step 2 River Impacts	AADT ==100.000		Climatic re	egion Calder Wet	Rainfall site	Keighley	ry (SAAR 1000mm)
Step 2 River Impacts	AADT SET00.000 Annual Q ₂₅ river flow (n Impermeable road area	n³/s)	Climatic re 0.01 8.3	Freshwater EQ			y (SAAR 1000mm)
Step 2 River Impacts (Enter zero in Annual Q ₂₅ river flow box to assess	Annual Q ₂₅ river flow (n	n ³ /s) a drained (ha)	8.3	Freshwater EQ Bioavailat	S limits:		1
Step 2 River Impacts	Annual Q _{ps} river flow (n	n ³ /s) a drained (ha)	0.01	Freshwater EQ Biosvailat Biosvailat	S limits:		1
Step 2 River Impacts (Enter zero in Annual Q _{as} river flow box to assess Step 1 runoff quality	Annual Q ₂₅ river flow (n Impermeable road area Permeable area drainin	n ³ /s) a drained (ha)	0.01 8.3 6.9	Freshwater EQ Bioavailat Bioavailat Is the discharge in	S limits: le dissolved copper (µg/l)	of a protected site	1 0 10.9 0 to conservation? No • 0
Step 2 River Impacts (Enter zero in Annual Q _{is} river flow box to assess Step 1 runoff quality only)	Annual Q ₂₅ river flow (n Impermeable road area Permeable area drainin Base Flow Index (BFI) Water hardness	n ³ /s) a drained (ha) ng to outfall (ha)	0.01 8.3 6.9 0.8	Freshwater EQ Bioavailat Bioavailat Is the discharge in For dissolv	S limits: S limits: le dissolved copper (µg/l) le dissolved zinc (µg/l) n or within 1 km upstream of ed copper only Ambien	of a protected site	1 0 10.9 0 to conservation? No • 0
Step 2 River Impacts (Enter zero in Annual Q ₂₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only	Annual Q ₂₅ river flow (n Impermeable road area Permeable area drainin Base Flow Index (BFI) Water hardness Is there a downstream	n ³ /s) a drained (ha) ng to outfall (ha) <u>Medium = 50-200 CaCO3/I</u>	0.01 8.3 6.9 0.8	Freshwater EQ Bioavailat Bioavailat Is the discharge in For dissolv	S limits: S limits: le dissolved copper (µg/l) le dissolved zinc (µg/l) n or within 1 km upstream of ed copper only Ambien	of a protected site	1 0 10.9 0 tor conservation? No • 0 ncentration (µg/l) 0 0
Step 2 River Impacts (Enter zero in Annual Q ₂₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only	Annual Q ₂₅ river flow (n Impermeable road area Permeable area drainin Base Flow Index (BFI) Water hardness Is there a downstream	n ³ /s) a drained (ha) ng to outfall (ha) <u>Medium = 50-200 CaCO3/1</u> structure, lake, pond or canal th ted river width (m)	0.01 8.3 6.9 0.8 • at reduces the veloci	Freshwater EQ Bioavailat Bioavailat Is the discharge in For dissolv	S limits: ble dissolved copper (μg/l) ble dissolved zinc (μg/l) n or within 1 km upstream of ed copper only Ambien int of discharge?	of a protected site	1 0 10.9 0 e for conservation? No • 0 ncentration (µg/l) 0 0
Step 2 River Impacts (Enter zero in Annual Q ₂₅ river flow box to assess Step 1 runoff quality only) For dissolved zinc only	Annual Q ₂₅ river flow (n Impermeable road area Permeable area drainin Base Flow Index (BFI) Water hardness Is there a downstream © Tier 1 Estimat	n ³ /s) a drained (ha) ng to outfall (ha) <u>Medium = 50-200 CaCO3/1</u> structure, lake, pond or canal th ted river width (m)	0.01 8.3 6.9 0.8 • at reduces the veloci	Freshwater EQ Bioavailat Bioavailat Is the discharge in For dissolv	S limits: S limits:	of a protected site Int background cor de slope (m/m) [hess bles -] Se this	1 0 10.9 0 e for conservation? No • 0 ncentration (µg/l) 0 0

Plate D.3 Catchment 2 Step 3 (post-mitigation) HEWRAT Results (Copper)

🖉 engianu								
		Soluble			Sediment – Chronic Impact			
	EQS - Annual Average Co			Acute Impact				
	opper	Zinc			Pass			
	0.82	4.42	ug/l	Copper Zinc				
Step 2					Sediment deposition for this site is judged as: Accumulating? No 0.32 Low flow Velm/s			
				Pass Pass				
Step 3	0.49	2.65	ug/l		Extensive? No - Deposition Index			
Road number		M 60 J 18		HE Area / DBFO number				
Assessment type		Non-cumulative assess	ment (single outfall)	•			
OS grid reference of assessmen	t point (m)	Easting		Northing				
OS grid reference of outfall struct	ure (m)	Easting		Northing				
Outfall number		Outfall 2		Listofoutfalls in cumulative				
Receiving watercourse		Castle Brook and ont	o Whittle Brook	assessment				
EA receiving water Detailed Rive	r Network ID			Assessor and a filiation	Hannah Bewley(Jacobs)			
Date of assessment		17/05/2023		Version of a ssessment	VI			
Notes								
Step 1 Runoff Quality	AADT >=100.000		1					
	AADT >=100,000		Climatic reg	ion Colder Wet Rainfall site	Keighley (SAAR 1000mm)			
Step 2 River Impacts								
Step 2 River impacts	Annual Q ₂₅ river flow (m ³ /s	5)	0.012	Freshwater EQS limits:				
(Enter zero in Annual Q ₂₅	Impermeable road area dra	ninod (ha)	4.6	Discussibility discolved service (v.e.l)				
river flow box to assess	Impermeable road area dia	aneo (na)	4.0	Bioavailable dissolved copper (µg/l)				
Step 1 runoff quality	Permeable area draining to	o outfall (ha)	1.2	Bioavailable dissolved zinc (µg/l)				
only)	Base Flore Index (BFI)		0.75					
	Base Flow Index (BFI)		0.75	is the discharge in or within 1 km upstream of a	a protected site for conservation?			
For dissolved zinc only	Water hardness	Medium = 50-200 CaCO3/I	•	For dissolved copper only Ambient	background concentration (µg/l)			
For sediment impact only	Is there a downstream stru	ucture, lake, pond or canal tha	t reduces the velocit	y within 100m of the point of discharge?	No •			
	© Tier 1 Estimated	river width (m)	0.5					
	C Tier 2 Bed width	(m)	3	Manning's n 0.07 Side	slope (m/m) 0.5 Long slope (m/m) 0.0001			
L								
Step 3 Mitigation				Eductor H d				
				Estimated effectivenes				
		Distance 1.4		Treatment for Attenuation for soluble solubles (%) restricted discharge rate				
		Brief description		is a service (is) in a service districtly falle				
Existing measures				0 D No restriction				
Proposed measures				40 No restriction				

Plate D.4 Catchment 2 Step 3 (post-mitigation) HEWRAT Results (Zinc)

ngland 5	Highways England	Water Risk Assessment I	001	Version 2.0.4 June 201	19			
		Soluble				Sediment - Chronic Impact		
	EQS - Annual Average Co	encentration		Acute Inpa	ct			
	Copper	Zinc				Pass		
	0.82	4.42	ug/l	Copper	Zinc			
Step 2					_	Sediment deposition for this site is judged as:		
				Pass	Pass	Accumulating? No 0.32 Low flow Vel m/s Extensive? No - Deposition Index		
Step 3	0.57	3.09	ug/l			Extensive? No - Deposition Index		
Road number		M 60 J 18		HE Area / DBFO num	iber			
Assessment type		Non-cumulative assess me	nt (single outfall)			•		
OS grid reference of assessme	nt point (m)	Easting		Ν	Northing			
OS grid reference of outfall struc	sture (m)	Easting		١	Northing			
Outfall number		Outfall 2		Listofoutfalls in cum	ulative			
Receiving watercourse		Castle Brook and onto W	/hittle Brook	assessment				
EA receiving water Detailed Riv	er Network ID			Assessor and a filiati	on	Hannah Bewley(Jacobs)		
Date of assessment		17/05/2023		Version of a sse ssme	nt	N		
Notes								
Step 2 River Impacts	Annual Q _{as} river flow (m ³ /s))	0.012	Freshwater EQS limits:				
(Enter zero in Annual Q ₀₅ river flow box to assess	Impermeable road area dra	ined (ha)	4.6	Bioavailable dissolved copper (µg/l)				
Step 1 runoff quality	Permeable area draining to	outfall (ha)	1.2	Bioavailable dissolve	ed zinc (μg/l)	10.9		
only)	Base Flow Index (BFI)		0.75	Is the discharge in or within '	1 km upstream of a prote	cted site for conservation?		
For dissolved zinc only	Water hardness	Medium = 50-200 CaCO3/I	•	For dissolved copper	only Ambient beskar	round concentration (µg/l)		
			_	For dissolved copper	only Ambient backgr			
For sediment impact only	Is there a downstream struc	cture, lake, pond or canal that rec	luces the velocity wit	hin 100m of the point of disch	arge?	No -		
	CTier 1 Estimated r	iver width (m)	0.5					
	CTier 2 Bed width ((m)	3 Man	ning's n 0.07	Side slope	(m/m) 0.5 Long slope (m/m) 0.0001		
			· · · · ·	·				
Step 3 Mitigation				Eat	imated effectiveness			
					tenuation for solubles -	Settlement of		
		B rief de scription			cted discharge rate (l/s)	sediments (%)		
F 1 (_	-						
Existing measures					striction · D			
Proposed measures				30 No re	striction •			

Plate D.5 Catchment 4 Step 3 (post-mitigation) HEWRAT Results (Copper)

Finghways england	Highways England	Water Risk Assessment	Tool	Version 2.0.4 June 2019	
		Soluble			Sediment - Chronic Impact
	EQS - Annual Average Co	ncentration		Acute Impact	
	Copper	Zinc			Pass
	0.80	4.32	ug/l	Copper Zinc	
Step 2				Pass Pass	Sediment deposition for this site is judged as: Accumulating? No 0.38 Low flow Vel m/s
	0.27	1.47	ug/l	F455 F455	Extensive? No - Deposition Index
Step 3			ugn -		
Paged symbols		1400.140		UE Area (DDEO aumhar	-
Road number		M60 J18	17.5 1 15.15	HE Area / DBFO number	
Assessment type	-11-1 ()	Non-cumulative assessme	ent (single outfall)	No delo o	
OS grid reference of assessme		Easting		Northing	
OS grid reference of outfall struc	cture (m)	Easting		Northing	
Outfall number		Outfall 4		List of outfalls in cumulative	
Receiving watercourse		Parr Brook		assessment	
EA receiving water D etailed Riv	er Network ID			Assessor and affiliation	Hannah Bewley (Jacobs)
Date of assessment		22/05/2023		Version of assessment	v2
Notes					
Step 1 Runoff Quality		•			
Step 1 Runon Quanty	AADT >= 100,000	-	Climatic region	Colder Wet Rainfall site	Keighley (SAAR 1000mm)
Step 2 River Impacts	Annual Q _{as} river flow (m ³ /s)		0.014	Freshwater EQS limits:	
(Enter zero in Annual Q ₉₅ river flow box to assess	Impermeable road area drai	ined (ha)	5.4	Bioavailable dissolved copper (µg/l)	1 D
Step 1 runoff quality	Permeable area draining to	outfall (ha)	6.6	Bioavailable dissolved zinc (µg/l)	10.9 D
only)	_				
	Base Flow Index (BFI)		0.78	Is the discharge in or within 1 km upstream of a prote	cted site for conservation?
For dissolved zinc only	Water hardness	Medium = 50-200 CaCO3/I	-	For dissolved copper only Ambient backg	round concentration (µg/l)
For sediment impact only	is there a downstream struc	cture, lake, pond or canal that re	duces the velocity w	ithin 100m of the point of discharge?	No 🔽 D
	Tier 1 Estimated ri	iver width (m)	0.5		
	C Time D Bod width /	m)		nning's n 0.07 D Side slope	(m/m) 0.5 Long slope (m/m) 0.0001
	C Tier 2 Bed width (iii)	_⊃ Mai	nning's n 0.07 D Side slope	(m/m) 0.5 Long slope (m/m) 0.0001
Step 3 Mitigation				E stimated effective ness	
				Treatment for Attenuation for solubles -	Settlement of
		Briefdescription		solubles (%) restricted discharge rate (I/s)	sediments (%)
		oneruesurption			
Existing measures				0 D No restriction	0 D
Proposed measures				66 No restriction 💌 D	88

Plate D.6 Catchment 4 Step 3 (post-mitigation) HEWRAT Results (Zinc)

england	Highways England	Water Risk Assessm	ent Tool		/ersion 2.0.4 June	2019			
		Solubl	e					Sediment - Ch	ronic Impact
	EQS - Annual Average Con	centration			Acute Ir	npact		-	
	Copper	Zinc						Pass	5
Step 2	0.80	4.32	ug/l		Copper	Zinc	Sed	iment deposition for t	
	0.32	1.73	ug/l		Pass	Pass		umulating? No ensive? No	0.38 Low flow Vel m/s - Deposition Index
Step 3	0.02								Deposition index
Road number		M60 J18			HE Area / DBFO	number			
Assessment type		Non-cumulative asse	ssment (single outfall))					•
OS grid reference of assessmen	nt point (m.)	Easting		,		Northing			
OS grid reference of outfall struc	ture (m)	Easting				Northing			
Outfall number		Outfall 4			List of outfalls in	cumulative			
Receiving watercourse		Parr Brook			assessment				
EA receiving water D etailed Riv	er Network ID				Assessor and affi	liation		Hannah Bewley(Jacob	(15)
Date of assessment		22/05/2023			Version of assess			v2	/
Step 1 Runoff Quality Step 2 River Impacts (Enter zero in Annual Qas river flow box to assess	AADT >= 100,000 Annual Q ₈₅ river flow (m ³ /s) Impermeable road area drain	ned (ha)	Climatic reg	Fresh	water EQS limits:	Rainfall site	Keighl	ey (SAAR 1000mm)	
Step 1 runoff quality	Permeable area draining to	outfall (ha)	6.6		Bioavailable diss	olved zinc (µg/l)		10.9 D	
only)	Base Flow Index (BFI)		0.78	Is the di	scharge in or with	in 1 km upstream of	a protected site	e for conservation?	No 🔫 🗅
For dissolved zinc only	Water hardness	Medium = 50-200 CaCO3/I	▼	Fo	r dissolved copp	per only Ambient	t background co	oncentration (µg/l)	0
For sediment impact only	Is there a downstream struct	ture, lake, pond or canal t	hat reduces the velocity	y within 100n	n of the point of di	scharge?		No 🔻 D	
	• Tier 1 Estimated riv	ver width (m)	0.5						
	☉ Tier 2 Bed width (n	n)	3	Manning's n	0.07 D	Sid	e slope (m/m)	0.5 Long sl	ope (m/m) 0.0001
Step 3 Mitigation		Briefdescription			atment for lubles (%)	E stimated effectiven Attenuation for solub stricted discharge ra	oles - Set	ttlem ent of iments (%)	
Existing measures				0		lo restriction 👻	D 0	D	
Proposed measures				60	1	lo restriction 👻	D 86		

Plate D.7 Catchment 5 Step 3 (post-mitigation) HEWRAT Results (Copper)

england	Highways England	Water Risk Assessment To	loc	Version 2.0.4 June 2019				
		Soluble			Sediment - Chronic Impact			
	EQS - Annual Average Con	centration		Acute Impact				
	Sopper	Ziac			Pass			
	0.10	0.56	ug/l	Copper Zinc				
Step 2					Sediment deposition for this site is judged as:			
				Pass Pass	Accumulating? No 0.14 Low flow Velm/s Extensive? No - Deposition Index			
Step 3	0.08	0.46	ug/l		Extensive? No - Deposition Index			
Road number		M 60 J 18		HE Area / DBFO number				
Assessment type		Non-cumulative assessmen	t (single outfall)		•			
DS grid reference of assessme		Easting		Northing				
DS grid reference of outfall struc	ture (m)	Easting		Northing				
Outfall number		Outfall 5		Listo foutfalls in cumulative				
Receiving watercourse		River lrk		assessment				
EA receiving water Detailed Riv	er Network ID			Assessor and a filiation	Hannah Bewley(Jacobs)			
Date of assessment		17/05/2023		Version of a ssessment	IV			
Step 1 Runoff Quality	AADT >=100.000		Climatic region	Colder Wet	Keighley (SAAR 1000mm)			
Step 2 River Impacts	Annual Q ₂₅ river flow (m ³ /s)	<u> </u>	0.24065	Freshwater EQS limits:				
(Enter zero in Annual Q ₂₅ river flow box to assess	Impermeable road area drair	ned (ha)	10.3 Bioavailable dissolved copper (µg/l)					
Step 1 runoff quality only)	Permeable area draining to (outfall (ha)	3.8	Bioavailable dissolved zinc (µg/l)				
	Base Flow Index (BFI)		0.597	0.597 Is the discharge in or within 1 km upstream of a protected site for conservation?				
For dissolved zinc only	Water hardness	Medium = 50-200 CaCO3/I	•	For dissolved copper only Ambient backg	ground concentration (µg/l)			
For sediment impact only	Is there a downstream struct	ure, lake, pond or canal that redu	uces the velocity wi	thin 100m of the point of discharge?	No -			
	© Tier 1 Estimated riv	ver width (m)	5					
	CTier 2 Bed width (n	1)	3 Mar	nning's n 0.07 Side slope	e (m/m) 0.5 Long slope (m/m) 0.0001			
Step 3 Mitigation				Estimated effectiveness				
				Treatment for Attenuation for solubles -	Settlementof			
		B rief description]	solubles (%) restricted discharge rate (l/s)				
		Ener de Scription						
Existing measures				0 D No restriction	0 0			
Proposed measures				19 No restriction	28			

Plate D.8 Catchment 5 Step 3 (post-mitigation) HEWRAT Results (Zinc)

📂 england	ngnways England	Marci Lisk Haacaanic		Version 2.0.4 June 2013	
		Soluble			Sediment - Chronic Impact
	EQS - Annual Average Con	centration		Acute Impact	
C	Sopper	Ziac			Pass
	0.10	0.56	ug/l	Copper Zinc	
Step 2				Pass Pass	Sediment deposition for this site is judged as: Accumulating? No 0.14 Low flow Velm/s
	0.09	0.48	ug/l	Pass Pass	Extensive? No - Deposition Index
Step 3	0.00	0.00	ugn		
Road number		M 60 J 18		HE Area / DBFO number	
Assessment type		Non-cumulative asses	s ment (single outfall)	HE Alea? DBPO fumber	
OS grid reference of a ssessmen	st s sist (m)	Easting	sment (single outrall)	Northing	
OS grid reference of outfall struc		Easting		Northing	
Outfall number	aure (m)			Listo foutfalls in cumulative	
Receiving watercourse		Outfall 5		assessment	
EA receiving water Detailed Riv	a Natura da ID	Riverlink		Assessor and a filiation	Liberth Baulas (Jacoba)
Date of assessment	er Network ID	47/05/0000		Version of a seesment	Hannah Bewley(Jacobs)
Notes		17/05/2023		version of assessment	N
Step 1 Runoff Quality	AADT ==100,000	-	Climatic region [Colder Wet Rainfall site	Keighley (SAAR 1000mm)
Step 2 River Impacts	Annual $Q_{\rm D5}$ river flow (m^3/s)		0.24065	Freshwater EQS limits:	
(Enter zero in Annual Q ₉₅ river flow box to assess	Impermeable road area drair	ned (ha)	10.3	Bioavailable dissolved copper (µg/l)	1
Step 1 runoff quality only)	Permeable area draining to	outfall (ha)	3.8	Bioavailable dissolved zinc (µg/l)	10.9
	Base Flow Index (BFI)		0.597	Is the discharge in or within 1 km upstream of a p	protected site for conservation?
For dissolved zinc only	Water hardness	Medium = 50-200 CaCO3/I	•	For dissolved copper only Ambient ba	ackground concentration (µg/l)
For sediment impact only	Is there a downstream struct	ture, lake, pond or canal th	at reduces the velocity with	nin 100m of the point of discharge?	No •
	© Tier 1 Estimated riv	ver width (m)	5		
	CTier 2 Bed width (n		a Maria	ning's n 0.07 Side sl	lope (m/m) 0.5 Long slope (m/m) 0.0001
	Citer 2 Dec Width (n	"/	3 Manr	Side si	Long slope (mm) 2000
Step 3 Mitigation					
				Estimated effectiveness	
		B. (1		Treatment for Attenuation for solubles solubles (%) restricted discharge rate (1	
		B rief de scription			
Existing measures				0 D No restriction	
Proposed measures				14 No restriction	D 28

Plate D.9 Catchment 6 Step 3 (post-mitigation) HEWRAT Results (Copper & Zinc)

highways england	Highways Engla	and Water Risk Assess	ment Tool	Version 2.0.4 June	2019	
		Solu	ble			Sediment - Chronic Impact
	EQS - Annual Average	Concentration		Acete la	apact	
	Copper	Zinc				Pass
Step 2	0.01	0.08	ug/l	Copper	Zinc	Sediment deposition for this site is judged as:
atep 2				Pass	Pass	Accumulating? No 0.35 Low flow Velm/
	-	-	ug/l	· • • • •		Extensive? No - Deposition Inde
Step 3						
Road number		M 60 J 18		HE Area / DBFO	number	
Assessment type			sessment (single outfa			
OS grid reference of assessme	nt point (m)	Easting	Sessiment (Single Guid		Northing	
OS grid reference of outfall struc		Easting			Northing	
Outfall number		Outfall 6		Listo foutfalls in (cumulative	
Receiving watercourse		River Invell		assessment		
EA receiving water Detailed Riv	er Network ID			Assessor and a fi	liation	Hannah Bewley(Jacobs)
Date of assessment		17/05/2023		Version of a sse s	sment	vi
Step 1 Runoff Quality Step 2 River Impacts (Enter zero in Annual Q _{in} river flow box to assess Step 1 runoff quality only)	AADT >=100,000 Annual Q ₂₅ river flow (n Impermeable road area Permeable area drainin Base Flow Index (BFI)	drained (ha)	Climatic re	Freshwater EQS limits: Bioavailable diss	olved copper (μg/l) olved zinc (μg/l)	Keightey (SAAR 1000mm)
For dissolved zinc only	Water hardness	Medium = 50-200 CaOO	3/1	-		ckground concentration (µg/l)
				r or uissorved cop	per only Amorent ba	orground convention (pgr)
For sediment impact only		ed river width (m)	I that reduces the veloci	ty within 100m of the point of di Manning's n 0.07	-	No Image: Comparison of the second seco
Step 3 Mitigation					Estimated effectiveness	
				Treatment for	Attenuation for solubles	- Settlement of
		Brief description			stricted discharge rate (I	
Existing measures					the second s	
Proposed measures	-				No restriction	

Plate D.10 Catchment 7 Step 3 (post-mitigation) HEWRAT Results (Copper)

highways england	Highways England	Water Risk Assessmer	t Tool	Version 2.0.4 June 2019	
		Soluble			Sediment - Chronic Impact
	EQS - Annual Average Con			Acute Impact	
	Copper	Zinc			Pass
Step 2	0.15	0.56	ug/l	Copper Zinc	Sediment deposition for this site is judged as:
Step 2				Pass Pass	Accumulating? No 0.38 Low flow Vel m/s
	0.09	0.34	ugł		Extensive? No - Deposition Index
Step 3					
Road number		M60 J18		HE Area / DBFO number	
Assessment type		Non-cumulative assess	ment (single outfall)		
OS grid reference o fassessmer	nt p oint (m)	Easting	ment (single out any	Northing	
OS grid reference o foutfall struc		Easting		Northing	
Outfall number		Outfall 7		List of outfalls in cumulative	
Receiving watercourse		Parr Brook		assessment	
EA receiving water Detailed Riv	er Network ID	Fail Diook		Assessor and affiliation	Hannah Bewley (Jacobs)
Date of assessment		22/05/2023		Version of assessment	v2
Notes		22/03/2023		Voldon of dooddanton.	12
Step 1 Runoff Quality Step 2 River Impacts	AADT >= 50,000 and < Annual Q _{es} river flow (m ³ /s)	100,000 💌	Climatic region	Colder Wet Rainfall site Freshwater EQS limits:	Keighley (SAAR 1000mm)
(Estas saus in Annual O					
(Enter zero in Annual Q ₉₅ river flow box to assess	Impermeable road area drair	ned (na)	1.5	Bioavailable dissolved copper (µg/l)	1
Step 1 runoff quality	Permeable area draining to	outfall (ha)	1.5	Bioavailable dissolved zinc (µg/l)	10.9 D
only)	Base Flow Index (BFI)		0.78	Is the discharge in or within 1 km upstream of a pr	otected site for conservation?
For dissolved zinc only	Water hardness	Medium = 50-200 CaCO3/I	•	For dissolved copper only Ambient bac	kground concentration (µg/l)
For sediment impact only	Is there a downstream struct	ture, lake, pond or canal that	reduces the velocity with	hin 100m of the point of discharge?	No 💌 D
	• Tier 1 Estimated m	ver width (m)	0.5		
	⊖ Tier 2 Bed width (n	n)	3 Man	ning's n 0.07 D Side slo	ope (m/m) 0.5 Long slope (m/m) 0.0001
Step 3 Mitigation					
				E stimated effective ness	
				Treatment for Attenuation for solubles solubles (%) restricted discharge rate (1	
		Briefdescription		sources (70) restricted discharge rate (1	
Existing measures				0 D No restriction -	
Proposed measures					

Plate D.11 Catchment 7 Step 3 (post-mitigation) HEWRAT Results (Zinc)

ngland 🖉	nignways England	water KISK ASSESS	iment roor		Version 2.0.4 Jun	e 2019			
		Solu	ble					Sediment	- Chronic Impact
	EQS - Annual Average Co	ncentration			Acute	Impact			
	Copper	Zinc							Pass
Step 2	0.15	0.56	ugłi		Copper	Zinc	Sec	diment deposition	for this site is judged as:
					Pass	Pass		cumulating? No	0.38 Low flow Vel m/s
Step 3	0.10	0.39	ugil				Ezt	ensive? No	- Deposition Index
Road number		M60 J18			HE Area / DBFO	number			
Assessment type		Non-cumulative as	sessment (single outfall	D					•
OS grid reference of assessmer	nt point (m)	Easting				Northing			
OS grid reference of outfall struc	ture (m)	Easting				Northing			
Outfall number		Outfall 7			List of outfalls in	cumulative			
Receiving watercourse		Parr Brook			assessment		<u> </u>		
EA receiving water D etailed Riv	erNetwork ID	I dif biook			Assessor and af	filiation		Hannah Bewley (J	ambs)
Date of assessment		22/05/2023			Version of asses			v2	
Notes		22/00/2020							
Step 1 Runoff Quality Step 2 River Impacts	AADT >= 50,000 and 4		Climatic reg 0.014	gion Colder	Wet 💽	Rainfall site	Keigh	iley (SAAR 1000mm)	
(Enter zero in Annual Q ₉₅	Impermeable road area dra		1.5		Bioavailable dies	solved copper (µg/l)		1 D	
river flow box to assess									
Step 1 runoff quality only)	Permeable area draining to	outtali (na)	1.5		Bioavailable diss	solved zinc (µg/l)		10.9 D	
	Base Flow Index (BFI)		0.78	0.78 Is the discharge in or within 1 km upstream of a prote				e for conservation	? No 🔻 D
For dissolved zinc only	Water hardness	Medium = 50-200 CaCO	3/1	F(or dissolved cop	per only Ambient	t background c	oncentration (µg/l)	0 D
For sediment impact only	Is there a downstream struc	cture, lake, pond or cana	al that reduces the velocity	y within 100	m of the point of a	discharge?		No 🔻 D	
	Tier 1 Estimated r	iver width (m)	0.5						
	⊖ Tier 2 Bed width (m)	3	Manning's n	0.07 D	Sid	e slope (m/m)	0.5 Lo	ng slope (m/m) 0.0001
Step 3 Mitigation						E stimated effectiven	0.00		
				-	eatment for	Attenuation for solut		tlem ent of	
		Print description				restricted discharge ra		liments (%)	
		Briefdescription							
Existing measures				0	D	No restriction 👻	D 0	D	
Proposed measures				30		No restriction	D 60		

Plate D.12 Catchment 4+7 Step 3 (post-mitigation) HEWRAT Results (Copper)

highways england	Highways England	Water Risk Assessment	Tool	Version 2.0.4 June 2019				
		Soluble			Sediment - Chronic Impact			
	EQS - Annual Average Co			Acute Impact				
	Copper	Zinc			Pass			
Step 2	0.98	5.27	ug/l	Copper Zinc	Sediment deposition for this site is judged as:			
				Pass Pass	Accumulating? No 0.38 Low flow Vel m/s			
	0.44	2.37	ugil		Extensive? No - Deposition Index			
Step 3								
Road number		M60 J18		HE Area / DBFO number				
Assessment type		Cumulative assessment	including sediments		•			
OS grid reference of assessme	nt point (m)	Easting	including countering	Northing				
OS grid reference o foutfall struc		Easting		Northing				
Outfall number		Outfall 7		List of outfalls in cumulative				
Receiving watercourse		Parr Brook		assessment				
EA receiving water D etailed Riv	ver Network ID	I di Diook		Assessor and affiliation	Hannah Bewley (Jacobs)			
Date of assessment		17/05/2023		Version of assessment	v1			
Notes		11103/2023		To look and a door do line in				
Step 2 River Impacts	AADT >=100,000 Annual Q _{as} river flow (m ³ /s)		Climatic region	Colder Wet Rainfall site Freshwater EQS limits:	Keighley (SAAR 1000mm)			
(Enter zero in Annual Q ₉₅ river flow box to assess	Impermeable road area drai	ined (ha)	6.9	Bioavailable dissolved copper (µg/l)	1 D			
Step 1 runoff quality	Permeable area draining to	outfall (ha)	8.1	Bioavailable dissolved zinc (µg/l)	10.9 D			
only)	Base Flow Index (BFI)		0.78	0.78 Is the discharge in or within 1 km upstream of a protected site for conservation?				
For dissolved zinc only	Water hardness	Medium = 50-200 CaCO3/I	•	For dissolved copper only Ambient back	ground concentration (μg/l)			
For sediment impact only	Is there a downstream struc	cture, lake, pond or canal that r	educes the velocity wi	thin 100m of the point of discharge?	No 💌 🗅			
	Tier 1 Estimated ri	iver width (m)	0.5					
	⊖ Tier 2 Bed width (i	m)	3 Mar	nning's n 0.07 D Side slop	e (m/m) 0.5 Long slope (m/m) 0.0001			
	- 1.01 Z - 200 Midul (,						
Step 3 Mitigation								
				E stimated effective ness				
				Treatment for Attenuation for solubles -	Settlement of			
		Briefdescription		solubles (%) restricted discharge rate (I/s) sediments (%)			
Existing measures				0 D No restriction 💌 D				
Proposed measures				55 No restriction V	75			

Plate D.13 Catchment 4+7 Step 3 (post-mitigation) HEWRAT Results (Zinc)

ngland 5	Highways England	Water Risk Assessment	1001	Version 2.0.4 June 2019	9		
		Soluble				Sedime	nt - Chronic Impact
	EQS - Annual Average Co	ncentration		Acute Impac	,t		
	Copper	Zinc					Pass
	0.98	5.27	ug/l	Copper	Zinc		
Step 2				Pass	Pass		on for this site is judged as:
	0.51	2.74	ug/l	rass	F 435		lo - Deposition Index
Step 3			ug.				Deposition inden
Provide services							
Road number		M60 J18		HE Area / DBFO num	ber		
Assessment type		Cumulative assessment	including sediments (
OS grid reference of assessme		Easting			orthing		
OS grid reference of outfall struc	cture (m)	Easting			orthing		
Outfall number		Outfall 7		List of outfalls in cumu assessment	ulative		
Receiving watercourse		Parr Brook					
EA receiving water Detailed Riv	er Network ID			Assessor and affiliatio	n	Hannah Bewle	(Jacobs)
Date of assessment		17/05/2023		Version of assessmer	nt	v1	
Notes							
Step 1 Runoff Quality	AADT >=100,000		Climatic region [Colder Wet 🗸	Rainfall site	Keighley (SAAR 1000m	•
Step 2 River Impacts	Annual Q _{s5} river flow (m ³ /s))	0.014	Freshwater EQS limits:			
(Enter zero in Annual Q ₉₅	Impermeable road area dra	iined (ha)	6.9	Bioavailable dissolved	d copper (µg/l)	1 D	
river flow box to assess Step 1 runoff quality	Permeable area draining to	o outfall (ha)	8.1	Bioavailable dissolved	d zinc (ua/l)	10.9 D	
only)	_					'	
	Base Flow Index (BFI)		0.78	Is the discharge in or within 1	km upstream of	a protected site for conservati	on? No - D
For dissolved zinc only	Water hardness	Medium = 50-200 CaCO3/I	•	For dissolved copper of	only Ambient	background concentration (μ	y/l) 🔹 🕞
For sediment impact only	Is there a downstream strue	cture, lake, pond or canal that i	educes the velocity with	in 100m of the point of discha	arge?	No 🔻 🛛	
			0.5		-		
	Tier 1 Estimated r	river width (m)					
	⊂ Tier 2 Bed width ((m)	3 Mann	ning's n 0.07 D	Side	e slope (m/m) 0.5	Long slope (m/m) 0.0001
Ctop 2 Mitigation							1
Step 3 Mitigation				Est	imated effectiven	ess	
				Treatment for Att	enuation for solub	les - Settlement of	
		Defect data and affect		solubles (%) restric	ted discharge rat	te (I/s) sed iments (%)	
		Briefdescription	1		-		
		Brief description			_		
Existing measures Proposed measures		Brief description		0 D No res	striction -	D 0 D	

Annex E Spillage risk assessment

Table E.1 Spillage Risk Assessment Parameters

Section Description	Risk Weighting	Length within catchment (km)	Annual Average Daily Traffic (vpd)	%HGV	Probability Score (P _{POL})	Probability of Spillage (P _{SPL})	Probability of Incident (P _{INC})	Probability of Incident (P _{INC})%	Return Period (Years)	Within Acceptable Limits?*
Catchment 1 (1A	x+1B)					·				·
2936_12831 Mainline M66 northbound	0.36	0.809	35,750	5.00	0.45	0.0002	0.0001	0.0086	11,695	Yes
50005_2935 Mainline M60 southbound	0.36	0.084	70,064	7.00	0.45	0.0001	0.0000	0.0024	41,051	Yes
12807_50005 Mainline M60 southbound	0.36	0.299	70,064	7.00	0.45	0.0002	0.0001	0.0087	11,533	Yes
2997_12807 Mainline southbound	0.36	0.355	39,562	5.00	0.45	0.0001	0.0000	0.0042	24,083	Yes
14434_12831 Slip Road from M60	0.43	0.334	4,729	10.00	0.45	0.0000	0.0000	0.0011	89,642	Yes
2716_50001 Flyover / Overbridge	0.43	0.193	30,521	8.00	0.45	0.0001	0.0000	0.0033	30,046	Yes
50001_50002 Flyover / Overbridge	0.43	0.207	30,521	8.00	0.45	0.0001	0.0000	0.0036	28,013	Yes
50002_12807 Flyover / Overbridge	0.43	0.07	30,521	7.00	0.45	0.0000	0.0000	0.0011	94,674	Yes
2997_50004 Junction 4 slip road	0.43	0.201	27,659	5.00	0.45	0.0000	0.0000	0.0020	50,936	Yes
50004_4902 Junction 4 slip road	0.43	0.248	27,659	5.00	0.45	0.0001	0.0000	0.0024	41,283	Yes
4902_14435 Junction 4 slip road	0.43	0.193	11,040	6.00	0.45	0.0000	0.0000	0.0009	110,751	Yes
14435_14436 Juntion 4 slip road	0.43	0.113	14,822	4.00	0.45	0.0000	0.0000	0.0005	211,340	Yes

Section Description	Risk Weighting	Length within catchment (km)	Annual Average Daily Traffic (vpd)	%HGV	Probability Score (P _{POL})	Probability of Spillage (P _{SPL})	Probability of Incident (P _{INC})	Probability of Incident (P _{INC})%	Return Period (Years)	Within Acceptable Limits?*
4903_2715 Roundabout exit mainline	0.36	0.22	11,498	8.00	0.45	0.0000	0.0000	0.0012	83,571	Yes
4903_2715 Roundabout exit	3.09	0.1	11,498	8.00	0.45	0.0001	0.0000	0.0047	21,420	Yes
4904_4903 Roundabout	3.09	0.031	15,275	6.00	0.45	0.0000	0.0000	0.0014	69,349	Yes
4904_4900 Roundabout	3.09	0.114	16,620	4.00	0.45	0.0001	0.0000	0.0038	25,998	Yes
12806_4900 Roundabout approach	3.09	0.054	5,961	8.00	0.45	0.0000	0.0000	0.0013	76,513	Yes
4000_12806 Roundabout approach	3.09	0.052	16,193	10.00	0.45	0.0001	0.0000	0.0043	23,399	Yes
2716_4000 Roundabout approach mainline	0.36	0.2	16,193	10.00	0.45	0.0000	0.0000	0.0019	52,220	Yes
12806_2935 Slip Road to M60 southbound	0.43	0.112	10,232	5.00	0.45	0.0000	0.0000	0.0004	247,103	Yes
4900_4908 Roundabout	3.09	0.045	22,587	5.00	0.45	0.0001	0.0000	0.0026	38,770	Yes
4908_4901 Roundabout	3.09	0.116	22,857	5.00	0.45	0.0001	0.0001	0.0067	14,862	Yes
4901_4907 Roundabout	3.09	0.036	21,079	7.00	0.45	0.0001	0.0000	0.0027	37,092	Yes
4907_4898 Roundabout	3.09	0.111	21,079	7.00	0.45	0.0002	0.0001	0.0083	12,030	Yes
4898_50010 Roundabout	3.09	0.022	5,805	8.00	0.45	0.0000	0.0000	0.0005	192,851	Yes
50010_4909 Roundabout	3.09	0.016	5,805	8.00	0.45	0.0000	0.0000	0.0004	265,170	Yes
4909_4899 Roundabout	3.09	0.112	15,275	6.00	0.45	0.0001	0.0001	0.0052	19,195	Yes
4899_50009 Roundabout	3.09	0.013	15,275	6.00	0.45	0.0000	0.0000	0.0006	165,371	Yes
50009_4904 Roundabout	3.09	0.018	15,275	6.00	0.45	0.0000	0.0000	0.0008	119,435	Yes

Section Description	Risk Weighting	Length within catchment (km)	Annual Average Daily Traffic (vpd)	%HGV	Probability Score (P _{POL})	Probability of Spillage (P _{SPL})	Probability of Incident (P _{INC})	Probability of Incident (P _{INC})%	Return Period (Years)	Within Acceptable Limits?*
Total		4.478				0.0019	0.0009	0.0856	1169	Yes
Catchment 2			•							
12831_12832 Mainline northbound	0.36	0.325	40,482	6.00	0.45	0.0001	0.0000	0.0047	21,424	Yes
2997_12807 Mainline southbound	0.36	0.3	39,562	5.00	0.45	0.0001	0.0000	0.0035	28,499	Yes
50004_4902 Slip Road	0.43	0.24	27,659	5.00	0.45	0.0001	0.0000	0.0023	42,659	Yes
Total		0.865				0.0002	0.0001	0.0105	9505	Yes
Catchment 4										
2173_50001 Flyover / Overbridge	0.43	0.229	30,521	8.00	0.45	0.0001	0.0000	0.0039	25,322	Yes
2713_4910 Mainline eastbound	0.36	0.193	88,500	13.00	0.45	0.0003	0.0001	0.0131	7,616	Yes
4910_2715 Mainline eastbound	0.36	0.507	68,642	14.00	0.45	0.0006	0.0003	0.0288	3,471	Yes
2716_2714 Mainline westbound	0.36	0.527	73,860	11.00	0.45	0.0006	0.0003	0.0253	3,950	Yes
2714_50003 Mainline westbound	0.36	0.183	79,437	11.00	0.45	0.0002	0.0001	0.0095	10,576	Yes
4905_4901 Slip Road (slip off M60)	0.43	0.098	15,165	6.00	0.45	0.0000	0.0000	0.0006	158,784	Yes
4901_4907 Slip Road to M62	0.43	0.036	21,097	7.00	0.45	0.0000	0.0000	0.0004	266,321	Yes
4907_4906 Slip Road to M62	0.43	0.072	16,679	4.00	0.45	0.0000	0.0000	0.0003	294,757	Yes
4906_60879 Slip Road to M62	0.43	0.153	11,102	4.00	0.45	0.0000	0.0000	0.0005	208,388	Yes
62879_12828 Slip Road to M62	0.43	0.152	34,301	7.00	0.45	0.0001	0.0000	0.0026	38,795	Yes
12828_50003 Slip road to M62	0.43	0.175	41,485	8.00	0.45	0.0001	0.0000	0.0041	24,379	Yes

Planning Inspectorate Scheme Ref: TR010064 Application Document Ref: TR010064/APP/6.3

Section	Risk Weighting	Length within	Annual Average	%HGV	Probability	Probability of	Probability of	Probability of	Return Period	Within
Description	KISK Weighting	catchment (km)	Daily Traffic (vpd)	701101	Score (P _{POL})	Spillage (P _{SPL})	Incident (P _{INC})	Incident (P _{INC})%	(Years)	Acceptable Limits?*
4906_2714 Slip Road to M62	0.43	0.296	5,577	5.00	0.45	0.0000	0.0000	0.0006	171,539	Yes
Total		2.621				0.0020	0.0009	0.0897	1114	Yes
Catchment 5										
12827_2936 Mainline northbound	0.36	0.398	81,310	7.00	0.45	0.0003	0.0001	0.0134	7,466	Yes
2935_26825 Mainline southbound	0.36	0.302	80,308	7.00	0.45	0.0002	0.0001	0.0100	9,962	Yes
2936_4905 Slip Road approach	0.43	0.153	45,561	8.00	0.45	0.0001	0.0000	0.0039	25,389	Yes
12806_2935 Slip Road exit	0.43	0.335	10,232	10.00	0.45	0.0001	0.0000	0.0024	41,307	Yes
Total		1.188				0.0007	0.0003	0.0298	3357	Yes
Catchment 6										
2709-26786 Mainline eastbound from J17	0.36	0.316	119,021	12.00	0.45	0.0006	0.0003	0.0267	3,747	Yes
26786-12713 Mainline eastbound	0.36	0.656	119,021	12.00	0.45	0.0012	0.0006	0.0554	1,805	Yes
50003-26787 Mainline westbound	0.36	0.575	120,958	10.00	0.45	0.0009	0.0004	0.0411	2,432	Yes
26787_2710 Mainline westbound to J17	0.36	0.488	120,958	10.00	0.45	0.0008	0.0003	0.0349	2,865	Yes
2709-26786 Slip Road eastbound from J17	0.43	0.316	119,021	12.00	0.45	0.0007	0.0003	0.0319	3,137	Yes
26787_2710 Slip Road westbound to J17	0.43	0.488	120,958	10.00	0.45	0.0009	0.0004	0.0417	2,399	Yes
Total		2.839				0.0051	0.0023	0.2317	432	Yes

Section Description	Risk Weighting	Length within catchment (km)	Annual Average Daily Traffic (vpd)	%HGV	Probability Score (P _{POL})	Probability of Spillage (P _{SPL})	Probability of Incident (P _{INC})	Probability of Incident (P _{INC})%	Return Period (Years)	Within Acceptable Limits?*
Catchment 7										
2713_50001 Flyover / Overbridge	0.43	0.595	30,521	8.00	0.45	0.0002	0.0001	0.0103	9,746	Yes
4910_50000 Slip Road	0.43	0.333	19,858	10.00	0.45	0.0001	0.0000	0.0047	21,411	Yes
50000_4911 Slip Road	0.43	0.129	19,858	10.00	0.45	0.0000	0.0000	0.0018	55,271	Yes
4910_50000 Roundabout approach	3.09	0.333	19,858	10.00	0.45	0.0007	0.0003	0.0336	2,980	Yes
4898_50010 Roundabout	3.09	0.022	5,085	8.00	0.45	0.0000	0.0000	0.0005	220,157	Yes
50010_4909 Roundabout	3.09	0.016	5,085	8.00	0.45	0.0000	0.0000	0.0003	302,716	Yes
4909_14434 Roundabout Exit	3.09	0.072	5,085	8.00	0.45	0.0000	0.0000	0.0015	67,270	Yes
14434_12831 Roundabout Exit	3.09	0.05	4,729	10.00	0.45	0.0000	0.0000	0.0012	83,329	Yes
Total		1.55				0.0012	0.0005	0.0538	1860	Yes

